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[A] ABSTRACT 

Objective 

This study compares the probability of detecting juvenile Coho Salmon (Oncorhynchus 

kisutch) using both environmental DNA (eDNA) techniques and underwater visual count (UVC) 

surveys in northern California rivers. Here, UVC surveys commonly have detection probabilities 

(p) surpassing 0.90, providing an ideal setting to examine the performance of newer eDNA 

methods. We also evaluate the potential for using eDNA concentrations to predict the count of 

Coho Salmon within pool habitats. 

Methods 

We conducted paired eDNA and UVC surveys in 96 pools across 25 stream reaches within the 

Smith River basin, California. Method-specific p and the effect of environmental covariates were 

estimated using multi-scale occupancy modeling. We used generalized linear models to evaluate 

the relationship of fish counts to eDNA concentrations and habitat covariates.  

Results 

The eDNA and UVC methods showed a high degree of agreement in detecting the presence of 

Coho Salmon within a pool (93% agreement) and survey reach (80% agreement). Detection 

probabilities for eDNA (peDNA) and for UVC (pUVC) were similar and high at median levels of 

pool residual depth and contributing basin area (peDNA=91%, pUVC=89%). Contributing basin 

area (a proxy for discharge) had a strong, negative effect that was more pronounced for peDNA 

than for pUVC (e.g.,in the largest basins, peDNA = 34% whereas pUVC = 77%). We did not find 

eDNA concentrations to be a good predictor of Coho Salmon counts in small pools.  
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Conclusion 

This study demonstrates that eDNA methods yielded nearly identical results to UVC surveys in 

catchments less than 36 km2 and can provide a highly effective approach for determining the 

distribution of Coho Salmon. However, additional investigation is required before eDNA could 

be used to estimate relative abundance in small pools.  

Impact Statement. — Environmental DNA was a highly effective survey method for detecting 

juvenile Coho Salmon in streams, yielding detection probabilities >0.90 under most conditions, 

but eDNA was not as good of a predictor of the relative abundance in small pools measured in 

the UVC surveys.   

[A] INTRODUCTION 

Conservation projects typically rely on monitoring programs for assessing population 

trends and collecting relevant ecological data to make appropriate management decisions or to 

evaluate the effects of past decisions (Nichols and Williams 2006; Lovett et al. 2007). 

Monitoring species’ geographic distribution through space and time is critical for the 

conservation of depleted populations (e.g., McElhany et al. 2000), but tracking the spatial 

structure of populations is challenging when species are hard to observe, have broad spatial 

distributions, occur at low abundance, or inhabit remote areas (Albanese et al. 2011; MacKenzie 

et al. 2018). These factors increase the chances of failing to detect a species that is present, and 

they bias estimates of species distributions if not accounted for. To address these challenges, 

monitoring programs often require extensive survey efforts and may utilize multiple survey 
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methods to maximize detectability for more accurate quantification of population spatial 

distribution (Nichols et al. 2008). 

Underwater visual count (UVC) surveys are commonly used to monitor the distribution 

and abundance of aquatic species (Hankin and Reeves 1988; Thurow 1994). Underwater visual 

surveys via direct (e.g., snorkeling) or indirect (e.g., camera stations) observation are often used 

in remote areas due to minimal gear requirements or when environmental conditions (e.g., deep 

water or high conductivity) limit the effectiveness of other methods such as seining or 

electrofishing (Thurow 1994; Albanese et al. 2011). The minimally invasive nature of UVC 

surveys makes them well-adapted for surveys of sensitive or imperiled species such as those 

listed by state or federal agencies. However, UVC surveys are prone to imperfect detection 

especially when abundance is low, when species are morphologically similar, or when field 

observations are limited by water clarity, depth, or habitat complexity (Thurow et al. 2012; 

Staton et al. 2022; see also Gu and Swihart 2004; MacKenzie et al. 2018). 

Environmental DNA (eDNA) is a rapidly expanding and promising tool for assessing the 

distribution and abundance of aquatic species (Thomsen and Willerslev 2015; Rodríguez‐

Ezpeleta et al. 2021). Several studies suggest that eDNA methods are more rapid, cost-effective, 

and sensitive than conventional survey methods, particularly when surveying for rare or 

endangered species (Laramie et al. 2015; Strickland and Roberts 2019; Sutter and Kinziger 2019; 

Spence et al. 2021; Yu et al. 2021). Compared to conventional monitoring methods, eDNA 

surveys offer a notable advantage in species detection due to the broad eDNA plumes emitted by 

aquatic organisms, resulting in nearly double the detection rates in some studies (Schmelzle and 

Kinziger 2016; McColl-Gausden et al. 2021; Dougherty et al. 2016; Valdivia-Carrillo et al. 
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2021). Successful detection of a target species with eDNA methods is influenced by the quantity, 

distribution, and attrition of eDNA in a system, which in turn depend on the characteristics of the 

target species (e.g., behavior, abundance, distribution, size, DNA shedding rate, and the form of 

eDNA produced; Turner et al. 2014; Yates et al. 2019; Castañeda et al. 2020, Andruszkiewicz 

Allan et al. 2021), and conditions that govern the movement and attrition of eDNA in the system 

(e.g., discharge, velocity, substrate, temperature, ph, salinity; Baldigo et al. 2017; Mize et al. 

2019; Harrison et al. 2019; Spence et al. 2021; Wood et al. 2021; Yates et al. 2021). These 

factors can influence the efficacy of eDNA methods to a degree that requires eDNA monitoring 

strategies to be tailored to the location and the species of interest (Goldberg et al. 2016; Yates et 

al. 2021). 

Occupancy modeling frameworks have been successfully applied to eDNA datasets to 

account for the imperfect detection of eDNA in water samples and for the influence of 

environmental factors on occupancy and detectability (e.g., Schmelzle and Kinziger 2016; Sutter 

and Kinziger 2019; Smith and Goldberg 2020; Martel et al. 2021). The hierarchical nature of 

eDNA surveys yields data that is highly suited to analysis using a multi-scale occupancy 

framework to estimate occupancy patterns at multiple spatial scales while accounting for 

environmental covariates and differences in survey method (Nichols et al. 2008; Dorazio and 

Erickson 2017; MacKenzie et al. 2018). For example, multi-scale occupancy models can be used 

to estimate and compare the detection probabilities of concurrently applied survey methods, 

providing critical information for survey design and method-specific effectiveness (Nichols et al. 

2008).  
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Study designs that utilize eDNA methods in conjunction with other conventional survey 

methods to compare results are common in the literature, but the formal quantification and 

comparison of method-specific detection probabilities is limited, particularly for river systems 

(e.g., Castañeda et al. 2020). Fediajevaite et al. (2021) found that only 18 of 535 studies using 

eDNA methods (3%) provided a quantitative comparison of eDNA to conventional survey 

methods via estimation of method-specific detection probabilities. Given the rarity of robust 

comparative studies, additional comparisons of UVC and eDNA in freshwater river systems are 

needed to inform management decisions and to better establish the efficacy of eDNA as a 

potential tool for monitoring.  

The goal of this study was to compare eDNA and UVC surveys for monitoring the spatial 

distribution of naturally spawned juvenile Coho Salmon Oncorhynchus kisutch in the Smith 

River, California. Coho salmon inhabiting the Smith River are part of the Southern 

Oregon/Northern California Coast Evolutionarily Significant Unit and are currently listed as 

threatened under the US Endangered Species Act. The California Department of Fish and 

Wildlife (CDFW) uses UVC methods (i.e., snorkeling) to determine the spatial distribution of 

juvenile Coho Salmon in the Smith River each summer (Walkley and Garwood 2017), and we 

integrated eDNA collections into CDFW’s pre-existing survey protocols over two survey 

seasons (2020-2021). The detection capabilities shown in the CDFW snorkeling surveys are very 

high (>0.9; Walkley and Garwood 2017) and create an optimal environment for precise 

benchmarking of eDNA methods. This study had two primary objectives: (1) to compare the 

ability of eDNA and UVC surveys to detect Coho Salmon and assess the influence of 
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environmental covariates on detection probabilities and (2) to evaluate the potential for using 

eDNA concentrations and habitat covariates to predict the count of Coho Salmon within pools.  

[A] METHODS 

[B] Study site 

The Smith River drains a watershed spanning 1,862 km2 of northern California and 

southern Oregon (Figure 1). Nearly all of the basin (98%) is within the Klamath and Siskiyou 

Mountains. The Smith River is the largest free-flowing coastal river in California; there are no 

dams and anadromous fishes have access to the entire basin (Garwood and Larson 2014; 

Walkley and Garwood 2017).  

[B] Field methods 

During July and August of 2020 and 2021, eDNA sampling was conducted in 

conjunction with the annual UVC survey of the Smith River basin executed as part of the CDFW 

Coastal Salmonid Monitoring Program (Adams et al. 2011; Garwood and Ricker 2016; Walkley 

and Garwood 2017). For the UVC survey, sampling units of approximately 1-3 km in length 

(hereafter reaches) were selected using a generalized random tessellation stratified algorithm out 

of 166 total sampling units that represent all juvenile salmonid-rearing habitat in the Smith River 

basin during summer baseflow conditions (Figure 1; Stevens and Olson 2004; Garwood and 

Larson 2014). Garwood and Larson (2014) identified potential salmonid rearing habitat using 

models of physical stream attributes (i.e., maximum gradient and minimum discharge 

thresholds), information on salmonid migration barriers, and known salmonid distributions. 
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Model predictions were split into distinct reaches at natural or artificial breaks (i.e., tributary 

confluences, bridges), with terminal ends at barriers to adult migration (For additional 

information please see Garwood and Larson 2014). The eDNA samples were collected in all 

non-mainstem UVC survey reaches in 2020 and in a subset of the non-mainstem UVC reaches in 

2021, yielding a total of 26 reaches (19 in 2020 and 7 in 2021). One reach was surveyed in both 

years but was treated as two independent samples because Coho Salmon typically spend only 

one summer rearing in streams (Brown et al. 1994). In 2021, extra eDNA sampling occurred 

selectively in UVC reaches with historically higher numbers of observed juvenile Coho Salmon 

(Walkley and Garwood 2017); this was done to increase the sample size of occupied reaches and 

to increase the range of observed fish counts in the data set because few reaches were found to be 

occupied in 2020. Any reaches from 2021 where eDNA samples were not collected were 

excluded from our analysis.  

Systematic sampling was used to select UVC survey pools within a survey reach. Only 

pools that met minimum habitat criteria of depth, size, temperature, and visibility, which varied 

according to the mean annual discharge of reach, were included in the UVC survey (for further 

information see Garwood and Ricker (2016). A coin flip decided which of the first two pools 

was the starting point of the UVC survey, after which every alternate pool was surveyed. In the 

first sampled pool, two divers conducted independent census counts of juvenile Coho Salmon 

(referred to as a “double-pass” pool). Every other upstream pool was surveyed systematically, 

with the next three surveyed pools only getting a single pass by one diver; this sequence (i.e., 2-

0-1-0-1-0-1-0) was repeated for the remainder of the reach. For each double-pass pool, the 

second diver waited approximately five minutes after the first diver’s pass for disturbed sediment 

in the pool to settle. When surveying a pool, divers proceeded upstream, examined the entire 
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width of the pool, and recorded the number of juvenile Coho Salmon present. Divers also 

recorded the number of large woody debris (LWD; >30 cm in diameter), the residual pool depth 

(RD; the difference in height between the deepest point in a pool and the downstream riffle crest; 

Lisle 1987), the total pool length, and the average pool width. Additionally, the contributing 

basin area (BA) to each survey reach was used as a proxy for river discharge as the two measures 

were assumed to scale geometrically (Galster 2007). The BA values were obtained using the 

StreamStats application (U.S Geological Survey 2016) and assumed to be constant for a given 

survey reach. On average, reaches were 2.1 km in length and there were four double-pass pools 

per survey reach (max of 11, min of 1). Within a reach, individual survey pools were on average 

17 m long, 6 m wide, 157 m apart, and the double-pass pools were 536 m apart. LWD counts 

ranged from 0-11 structures per pool, RD ranged from 1-320 cm per pool, and BA ranged from 

0.26-155 km2 per reach (Figure S1).   

Water samples for eDNA analysis were collected at all double-pass pools with a few 

exceptions. When reach lengths were greater than 2 km or when many (>30) pools were 

expected, water samples were collected at every other double-pass survey pool. All water 

samples were collected before divers entered the water, by personnel dedicated to water sample 

collection (i.e., not divers). At each pool selected for eDNA sampling, three 1-liter water samples 

were collected using single-use Whirl-Pak bags (Nasco). Water samples were obtained by 

drawing a Whirl-Pak bag along the water’s surface in the thalweg at the downstream end of a 

pool. All samples were filtered in the field immediately after collection, across 0.45-micron 

cellulose nitrate filters (Cytvia), held in filter funnels (Thermo Scientific™ Nalgene™ Single-

Use Analytical Filter Funnels). Filter funnels were held in a filtration manifold that allowed up to 

four samples to be filtered simultaneously using a manual vacuum pump. Filter support pads 
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(MilliporeSigma™) were used to ensure equal filtration across the surface of the filter. A field 

blank was collected at least once per survey day by filtering 1 liter of store-bought drinking 

water. Field blanks were processed the same as the other samples and served as comprehensive 

contamination controls. After filtration, filters were placed into 2 ml microcentrifuge tubes 

(Eppendorf) containing 360 µL of cell lysis buffer (QIAGEN, buffer ATL). Samples remained 

unfrozen for a maximum of three days post-filtration due to the remote nature of some survey 

locations but were stored at -20℃ upon returning from the field.  

[B]Molecular methods.— The DNA was extracted directly from filters using the QIAGEN 

DNeasy Blood and Tissue Kits following the manufacturer's instructions with three exceptions: 

1) we used 360 µl of buffer ATL and 40 µl proteinase K (Schmelzle and Kinziger 2016), 2) 

QIAshredders (QIAGEN) were used to ensure lysate homogenization, and 3) during the final 

elution step, 100 µl of elution buffer was used to increase the final DNA concentration of the 

elution. All extractions were completed within three months of field collection and extracted 

DNA was stored at -20 ℃.   

The concentration of eDNA in a sample was estimated using droplet digital PCR 

(ddPCR) with the Bio-Rad QX200 Droplet Digital PCR System. Each ddPCR reaction was run 

in duplex using assays for Coho Salmon (developed by Pilliod and Laramie (2016), modified by 

Spence et al. 2021) and Chinook salmon (Oncorhynchus tshawytscha; [Unpublished, U.S. Forest 

Service National Genomics Center for Wildlife and Fish Conservation at the Rocky Mountain 

Research Station, Missoula, Montana]). Assay specificity and sensitivity were verified by testing 

against co-occurring species: Coho Salmon, Chinook salmon, steelhead Oncorhynchus mykiss, 

and Coastal Cutthroat Trout Oncorhynchus clarkii clarkii. Fluorescence plots indicated signal 
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interference in the Chinook salmon channel when the Coho Salmon assay was present, leading to 

the exclusion of the Chinook data from any subsequent analysis or consideration. 

Each ddPCR reaction mix was comprised of 900 nM forward primer, 900 nM of reverse 

primer, 250 nM probe, 5 µl of ddPCR Multiplex Supermix, 0.2 µl of 300 mM dithiothreitol, 15 

µl of DNA template to maximize the probability of target DNA presence in the analyte (Rees et 

al. 2014; Doi et al. 2015), and DNA-free water to bring the total volume to 22 μl. Each reaction 

mix contained equal amounts of primers and probes for both Coho Salmon and Chinook salmon. 

Then, for each sample, 20 µl of the total reaction mix and 70 µl of Bio-Rad droplet generator oil 

were placed into individual wells of a Bio-Rad DG8 cartridge and placed into the Bio-Rad QX-

200 droplet generator which partitions the reaction mix into as many as 20,000 droplets for PCR 

amplification. Partitioned samples were transferred to 96 well ddPCR plates, sealed with a PX1 

PCR plate sealer and placed in an MJ Research PTC-100 Thermal Cycler. Thermocycling 

conditions were 10-minutes at 95℃ followed by 40 cycles of 30-seconds at 94℃ and 60-seconds 

at 60℃, and concluded with 10-minutes at 98℃, and holding at 4℃. The temperature ramp rate 

was set to 2°C between all steps. The number of positive and negative droplets in each reaction 

were determined using a QX200 droplet reader. Concentrations are reported as the Poisson-

corrected copies per reaction as estimated by the Bio-Rad QX Manager Software Version 1.2. 

Each ddPCR plate run contained at least one positive control (genomic DNA extracted from the 

tissue of the target species) and at least one negative control (containing all reagents except DNA 

template, which was replaced with DNA-free water). Each water sample was analyzed only a 

single time (i.e., single technical replicate) unless the results showed signs of anomalous 
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fluorescence patterns or low droplet counts. When this occurred, the sample was re-run, and the 

results of the second analysis were used.   

All DNA extractions and ddPCR setups were conducted in a dedicated low-copy eDNA 

laboratory. All work surfaces and extraction tools (i.e., benches, centrifuges, and racks) were 

sterilized with UV light and researchers could not enter if they had entered the separate dedicated 

lab designated for any high concentrations of DNA (e.g., from running PCR reactions). 

Limits of detection (LOD) and quantification (LOQ) were determined using serially 

diluted genomic DNA extracted from fin clips using Qiagen DNeasy Blood and Tissue Kits. The 

LOD, defined as the lowest concentration of DNA resulting in at least 95% positive detections, 

and LOQ, defined as the lowest concentration with a coefficient of variation below 35%, were 

determined using curve fitting methods. Positive detections were indicated by samples for which 

measured concentrations of Coho Salmon eDNA exceeded the LOD (7 DNA copies per 

reaction). Estimates of eDNA concentration that exceeded the LOQ (47 DNA copies per 

reaction) were considered to be accurate measures. 

[B] Occupancy analysis 

Multi-scale occupancy models were used to estimate and compare the method-specific 

detection probabilities for eDNA and UVC. Models were fitted in a maximum-likelihood 

framework using the software PRESENCE (version 2.13.10; Hines 2006). The occupancy model 

included three parameters at different hierarchical levels: Psi (Ψ) is the probability of species 

occurrence in a river reach; theta (θt) describes the probability of the species occurrence in any 

given pool t of the larger survey reach which is conditional on the species being present within 
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the reach; and 𝑝𝑝𝑚𝑚,𝑡𝑡 describes the probability of the species being detected by survey method m in 

pool t of the survey reach, conditional upon the species being present in both the reach and the 

pool. This analysis only included data from the double-pass survey pools with both eDNA and 

UVC observations. A detection history for a survey pool would have five digits, with the first 

two numbers representing detections from each of the two dive passes and the last three numbers 

representing detections from the three eDNA samples. For example, a detection history of 11101 

in a survey pool would indicate that Coho Salmon were detected in the pool by both divers and 

in eDNA water samples one and three, and a detection history of 00000 would indicate that 

neither method detected Coho Salmon. Note that this parameterization differs from some other 

applications of hierarchical modeling of eDNA in which 𝑝𝑝 for eDNA is defined as the 

probability of detecting Coho Salmon DNA in a replicate quantitative PCR (qPCR) run within a 

single water sample and θ is the probability that the water sample contains Coho Salmon DNA 

(Schmidt et al. 2013; Schmelzle and Kinziger 2016; Dorazio and Erickson 2017; Spence et al. 

2021).  

The analysis was structured to assess the influence of several covariates that potentially 

affect detection of Coho Salmon by either or both survey methods. We hypothesized that UVC 

detection probability would be reduced by increasing RD and LWD due to difficulties in 

observing individuals in deeper water or with visual obstructions (e.g., Thurow et al. 2006; 

Staton et al. 2022) and that eDNA detection probability would be reduced by increasing BA due 

to the dilution of eDNA particles (Baldigo et al. 2017). For this analysis, both RD and BA were 

log10  transformed. Finally, a covariate for year was included to account for possible differences 

in detection probabilities between years. Turbidity was not included as a covariate because it was 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 



14 

 

14 

 

consistently very low, and it was not expected to have inhibited a diver’s ability to detect the 

target species. Count was also considered as a covariate but was not included in the final 

analysis, due to model conversion issues. Note that we did not assess the influence of covariates 

on Ψ or θ because our focus was to compare detection probabilities rather than determine species 

occupancy patterns and because site selection for eDNA methods was not random in 2021.  

Model selection was done using Akaike’s information criterion (AIC) with a suite of 23 

models defined by nearly all possible combinations of the covariates (method, BA, RD, LWD, 

year). Aside from a null model, where the detection probabilities were constant, ‘method’ was 

included in every model fit. Covariates were included individually and with interactions by 

method (with the exception of a year-method interaction). Occupancy models were ranked using 

AIC, AIC differences (ΔAIC), and AIC weights (Burnam and Anderson 2002). All models 

within a ΔAIC of 2 were considered as competing models supported by the data.  

For the best model, we generated response plots to assess the influence of each covariate 

on detection probabilities. Predictions were made over the observed range of values for a 

covariate while all other covariates were held at their median values. A Monte Carlo approach 

was used to approximate the standard error (SE) of the estimated detection probabilities. This 

was done by taking 1000 random samples of coefficients from a multivariate normal distribution 

defined by the estimated coefficients and their variance-covariance matrix using the MASS 

package in R version 4.0.5 (Venables and Ripley 2002; R Core Team 2021). Each set of 

randomly drawn coefficients was used to generate a response curve for each covariate (while 

holding the other covariates at their medians). The SE for the response plots was approximated 

using the distribution of 1000 Monte Carlo predictions generated for each covariate value.  
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The cumulative probability of detection (p*) was calculated as p* = 1 - (1-pt)n, where n is 

the number of replicate water samples taken from a pool that contained Coho Salmon DNA. 

Cumulative detection probabilities were calculated for the highest, median, and lowest estimates 

of pt for the sampled pools based on the observed covariates and the best occupancy model.  

Plots of p* as a function of sample size were analyzed to estimate the sampling effort required to 

detect Coho Salmon DNA with 95% cumulative probability under the observed values of 

covariates (McArdle 1990).   

[B]Concentration-count analysis 

To assess the potential for estimating abundance of Coho Salmon in the absence of visual 

counts, we fit a generalized linear model (GLM) that related the average of the two counts from 

the double-pass survey pools (rounded to the nearest integer), to the natural log (ln) of the 

average of the three eDNA concentrations [ln(copies/reaction)] and the three habitat covariates: 

LWD [count], RD [log10(cm)] and BA [log10(km2)]. To account for variation in pool size, an 

offset of the natural log of pool area was also included, where pool area was calculated using the 

product of the maximum pool length and the average pool width. This analysis excluded data 

from pools in which no fish were observed. Initial analysis of models including all variables 

indicated that a zero-truncated, generalized Poisson error distribution yielded superior fits 

compared to zero-truncated Poisson or Negative Binomial distributions based on AICc and 

residual variance diagnostics (Zuur et al. 2009).  A total of 32 models with all possible 

combinations of the covariates and the area offset were fit and compared by AICc using 

packages glmmTMB (Brooks et al. 2017) and MuMIn (Bartoń 2020). Model diagnostics (e.g., 

residual variance, overdispersion, data distribution) were assessed using package performance 
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(Lüdecke et al. 2021). The best model was used to estimate the effects of the covariates on mean 

fish count while holding all other covariates at their median values.  

[A] RESULTS 

[B] Survey results 

 A total of 114 double-pass pools and 318 single-pass pools distributed among 25 reaches 

were surveyed in 2020 and 2021. Of the double-pass pools, 96 were surveyed with both eDNA 

and UVC methods. Diver counts of juvenile Coho Salmon ranged from 0-210 fish per pool 

(mean = 32; Figure S1). The difference between the two independent dive counts ranged from 0 

to 81 (mean = 4), but there was 100% agreement between divers regarding whether a pool was 

occupied or not. None of the field blanks or negative PCR controls tested positive for Coho 

Salmon eDNA. All of the positive controls were positive for Coho Salmon eDNA.  

Survey methods yielded identical results with respect to the detection and non-detection 

of Coho Salmon in 93% (89 of 96) of pools in which both surveys were conducted (27 

presences; 62 absences; Table 1), indicating strong agreement between the two methods 

(Pearson's Chi-squared test; �2=63.00, p<<0.001). Similarly, the two methods agreed at 80% (20 

of 25) of survey reaches (7 presences; 13 absences; Table 1) and the relationship was statistically 

significant (Pearson's Chi-squared test with simulated p-value based on 2000 replicates; 

�2=7.77, p=0.013). Coho salmon eDNA was detected in three reaches where none were 

observed, and Coho Salmon were observed in three (different) reaches where no eDNA was 

detected. 

[B] Occupancy modeling  
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Five of the 23 occupancy models examined had a ΔAIC less than two (Table 2) and were 

far more supported than the null model with no covariates for p (ΔAIC of 19.96). The top model 

(AIC Weight = 0.25) included survey method, RD, BA, and a method-BA interaction as 

covariates for detection probability. Survey method, RD, and BA were included in all five 

models while all other covariates were less consistent (Table 2). For plotting the response, we 

focused on the model with the highest model weight for simplicity. 

At median values of RD and BA, the estimated detection probability of eDNA 

(peDNA=0.91; 95% CI: 0.80 - 0.96), was very similar to the estimated detection probability of 

UVC (pUVC=0.89; 95% CI: 0.79 - 0.94; Figure 2A). Estimated detection probabilities for both 

methods increased with RD; pUVC ranged from 0.61 – 0.94 and peDNA from 0.68 – 0.96 (Figure 

2B). Although the large standard errors of predictions at low RD values were strongly influenced 

by a single data point, the predicted response was unaffected by exclusion of this observation. 

Increasing BA had a strong negative effect on both methods, but the effect was more pronounced 

for eDNA; as log10(BA) increased beyond 1.55 (i.e., BA > 36 km2), peDNA declined rapidly from 

0.99 reaching 0.34 when  BA > 100 km2, while pUVC declined more gradually from 0.98 to 0.77 

(Figure 2B). Across the surveyed pools, the range of the site-specific estimates of detection 

probability for peDNA values (0.99 to 0.13) varied more widely than pUVC (0.97 to 0.42). 

 Under our sampling protocol, triplicate water samples were sufficient to achieve 

cumulative detection probabilities >95% at nearly all (98%) of the surveyed pools. Given the 

presence of Coho Salmon DNA in a pool with median values of RD and BA, it would be 

detected with high probability (p*= 0.91, 95% CI: 0.79 - 0.95) in a single water sample, and with 

>95% probability in two samples (Figure 3). Under conditions that strongly suppress the 
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detection of eDNA, particularly sites with BA values greater than 100 km2, twenty or more 

samples would be required to achieve >95% cumulative probability of detection.  

[B] Concentration-count analysis 

GLM models explained observed fish counts in pools well, but eDNA was not an 

important predictor in the best model. Competing GLMs (with ΔAIC<5) consistently included 

the pool-area offset and basin area as covariates, whereas LWD, eDNA, and RD only occurred in 

models with ΔAICc > 2 (Table 3). The best model had a model weight of 47% (Table 3) and had 

a strong correlation between observed and predicted fish counts in pools (R2=0.83). Fish count 

was predominantly driven by a positive relationship with pool area that accounted for larger 

pools being able to hold more fish at a given fish density (all else being equal), but there was also 

strong evidence of lower counts in reaches with larger basin areas (Figure 4), which is consistent 

with juvenile coho habitat preferences for small streams (Brown et al. 1994).   

[A] DISCUSSION 

In this study, we demonstrate that eDNA methods are comparable to UVC surveys 

known to have exceptionally high detection probabilities for juvenile Coho Salmon in our 

research system. Our findings suggest that these eDNA methods have the potential to 

substantially enhance sensitivity and could be a suitable alternative to UVC surveys in settings 

where species detection rates are much less than 1, which is common in most field surveys 

(Fediajevaite et al. 2021). We found that peDNA was effectively equivalent to pUVC in reaches with 

contributing basins < 36 km2, but peDNA declined sharply in reaches with larger basin areas and 

with presumably higher discharge. Two of the three instances where eDNA methods failed to 
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detect Coho Salmon where UVC were successful occurred in the reaches with the highest BA’s 

(i.e., 115 and 155 km2). Our results also corroborate other studies, demonstrating that eDNA is a 

highly effective method for detecting rare species (McKelvey et al. 2016; Rice et al. 2018; 

Strickland and Roberts 2019; Sutter and Kinziger 2019, Fediajevaite et al. 2021, Spence et al. 

2021). However, additional investigations are necessary to determine whether eDNA methods 

could provide a reliable tool for predicting juvenile Coho Salmon abundance in small pools. 

This study demonstrated that eDNA methods have the capability to yield similar 

estimates of Coho Salmon spatial distribution with less overall sampling effort. Specifically, 

UVC and eDNA methods agreed on the presence or absence of Coho Salmon in 80% of 

surveyed reaches, despite differences in sampling intensity (432 pool surveys with UVC; 96 with 

eDNA). These results align with earlier investigations conducted by Evans et al. (2017) and Yu 

et al. (2021) that showed eDNA methods require less sampling effort than some conventional 

survey methods. Studies have also shown eDNA methods can be more cost effective than 

conventional methods, although we did not conduct a detailed cost comparison in this study 

(Evans et al. 2017; Fediajevaite et al. 2021; Yu et al. 2021). 

The best occupancy model from our analysis indicates that both methods had a high 

probability of detecting Coho Salmon in a pool (~90% in typical settings), but those detection 

probabilities were influenced strongly by BA and weakly by RD. In general, the eDNA detection 

probabilities were high and greater than that of UVC until the median BA (18 km2), at which 

point eDNA detection probabilities began to decline more rapidly than those of UVC. These 

results are consistent with the hypothesis that increasing discharge, for which BA is a proxy, 

would decrease the probability of capturing and detecting rare organismal DNA due to the 
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dilution of particles (Levi et al. 2019, Pochardt et al. 2020). However, the effect of discharge on 

observed eDNA concentrations can be complex and dependent upon numerous factors that may 

vary across time and space (e.g., eDNA plume dynamics, increased turbidity and presence of 

inhibitors, eDNA particle settling and resuspension dynamics; Jane et al. 2015, Wilcox et al. 

2016; Matter et al. 2018, Wood et al. 2021, Van Driessche et al. 2023). In this study, the negative 

BA effect for eDNA may have been more substantial because the eDNA sampling effort per pool 

was fixed (three samples per pool), whereas the sampling effort for UVC (in terms of area 

surveyed) was commensurate with pool size. The slight decrease in method-specific detection 

probabilities at lower values of RD may have resulted from faster water velocities in survey 

pools with low values of RD which could have hindered UVC divers and diluted available 

eDNA as these sites were more similar to runs or riffles; for example, Wood et al. (2021) found 

that the amount of available eDNA in the midstream water column was generally lower and 

more variable in areas with high velocity than where velocities were low. 

In river systems, eDNA is carried from the source organism and can be detected 

downstream if eDNA concentrations remain sufficiently high (Goldberg et al. 2016). Although 

this eDNA transport can enhance the detectability of a target species throughout an extended 

spatial area, it undermines the spatial independence of samples assumed within occupancy 

models (MacKenzie et al. 2018). In the present study, however, the spacing between pools 

surveyed for eDNA consistently exceeded scales of eDNA transport reported for streams of 

similar size (survey spacing: 536 m; 95% C.I.: 438 - 635 m, detection ranges of ~200 m [Spence 

et al. 2021; see also Jo and Yamanaka 2022]), supporting our modeling assumption of 

independence across sampling locations. It is possible that some eDNA detections could have 

resulted from fish that were upstream of an unoccupied pool and thus not available for detection 
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via UVC. However, the strong method-specific agreement in pool-level detections suggests this 

was not a common occurrence nor a substantial source of bias in the occupancy models. Of the 

few cases where eDNA detected Coho Salmon and UVC did not, fish were not typically 

observed by divers in the single-pass pools immediately upstream of the eDNA sample pool; in 

the singular case where this happened, Coho Salmon were detected a substantial distance 

upstream (300 m) in low numbers (n=3).  

 Although our capacity to use eDNA in water samples to estimate abundance is still 

developing, a growing body of research demonstrates a positive correlation between eDNA 

concentration and biomass or abundance (Rourke et al. 2022, Takahara et al. 2012, Schmelzle 

and Kinziger 2016, Tillotson et al. 2018, Capo et al. 2020, Shelton et al. 2022). In the present 

study, however, we found that eDNA concentration was not a good predictor of the average 

count of Coho Salmon in a pool. We suspect that the limited variability in abundance and 

biomass of juvenile Coho Salmon across sampling units (2-210 individuals per pool [2-orders of 

magnitude]) contributed to our inability to resolve such a relationship. Studies that have 

identified strong relationships between eDNA concentration and abundance indices have done so 

when differences in abundance or biomass (ranging over 3 to 6 orders of magnitude) varied 

substantially more than in our system (Tillotson et al. 2018; Yates et al. 2019; Pochardt et al. 

2020; Sepulveda et al. 2021; Shelton et al. 2022).  

This study and others suggest that eDNA surveys could be a suitable alternative or 

complement to UVC surveys, but more work is needed to develop robust and optimal sampling 

designs. Our protocol of collecting triplicate 1-liter water samples was sufficient to achieve a 

95% probability of detecting Coho Salmon DNA in a pool (if present) in basins up to 70 km2, but 
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more sampling effort would be required to achieve similar confidence levels for detection of 

eDNA in sites with larger contributing basins. Instead of filtering substantially larger volumes of 

water, which can be logistically difficult in some systems (e.g., filter clogging, increased 

presence of inhibitors; Capo et al. 2020), future eDNA monitoring efforts should consider 

increasing the number of water samples commensurate with basin size to maintain high 

cumulative detection probabilities, or they could limit eDNA surveys to areas with acceptably 

high performance given sampling constraints. Monitoring programs that use eDNA also need to 

evaluate appropriate levels of spatial sampling effort (e.g., number of pools sampled within a 

reach) to achieve desired objectives, and this will depend on the pool-level occupancy rate and 

detection probability for the target species (see equations in Spence et al. 2021). Based on pool-

level occupancy rates of juvenile Coho Salmon in the Smith River (0.47 ± 0.02 SE; Walkley and 

Garwood 2017) and our median estimated eDNA detection probabilities sampling five pools per 

reach (using three water samples and 1 ddPCR replicate) was sufficient to yield >95% 

cumulative probabilities of encountering and detecting Coho Salmon at the reach scale. In other 

California streams, Spence et al. (2021) found that sampling two locations per survey reach 

(using 3 water samples and 1-2 PCR replicates) resulted in an overall detection probability of 

0.74 - 0.99, depending on Coho Salmon densities. Overall, eDNA can be an effective tool for 

detecting and monitoring fishes in rivers and streams but monitoring programs using this method 

should be designed and optimized to achieve desired objectives given case-specific detection and 

occupancy rates, environmental conditions, and sampling constraints.  
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 TABLES

TABLE 1. The percentage (and number) of survey pools and reaches in which coho salmon were 
detected (+) or not detected (-) by each survey method (i.e., eDNA and UVC). Numbers in 
parentheses indicate the number of pools or reaches. Pool comparisons are based on the 96 
double-pass pools that were surveyed using both methods. Reach comparisons were calculated 
for the 25 reaches using an additional 318 pools where only UVC observations occurred, which 
reflects the current survey protocol. 

eDNA Detection UVC Detection Pools Reaches 

+ + 28% (27) 28% (7) 

- - 65% (62) 52% (13) 

+ - 5% (5) 8% (2) 

- + 2% (2) 12% (3) 

TABLE 2. Top five occupancy models (with ΔAICc < 2) for juvenile Coho Salmon from the 
multi-method occupancy analysis. Covariates that were included (+) in each model are identified. 
Detection probability at the pool-level was modeled as a function of survey method (m), count of 
large woody debris (LWD), the log10  of residual pool depth (RD), the log10 of the contributing 
basin area (BA), Year (Yr), and interactions between the habitat covariates and method (e.g., BA 
* m). K represents the number of estimated parameters in the model. Differences in AICc values
relative to the top-ranked model (ΔAICc) and model weights (W) are provided for all models.

Model Rank m LWD RD BA Yr LWD*m RD*m BA*m K ΔAICc W 

1 + + + + 7 0 0.25 
2 + + + 6 1.48 0.12 
3 + + + + + + + 10 1.84 0.10 
4 + + + + + 8 1.89 0.10
5 + + + + + 8 1.95 0.10

Table 3. Model selection table of generalized linear models (with ΔAICc < 5) for predicting non-
zero counts of juvenile Coho Salmon in a pool. Models are ranked according to AICc, ΔAICc, 
and model weight. Covariates that were included (+) in each model are identified. Covariates 



included log10 of basin area (BA), large woody debris (LWD), the mean of the natural log 
transformed eDNA concentrations (eDNA [copies/reaction]), the residual pool depth (RD), and 
the natural log of pool area (PA) as an offset. 

Model BA LWD eDNA RD PA df AICc ΔAICc W 

1 + + 3 253.66 0.00 0.474 

2 + + + 4 256.14 2.48 0.137 

3 + + + 4 256.30 2.64 0.127 

4 + + + 4 256.36 2.70 0.123 



 FIGURE CAPTIONS

FIGURE 1. The anadromous rearing habitat (light blue lines) of the Smith River (California, 
USA) and the locations of the 25 surveyed stream reaches (dark blue bolded lines) to compare 
the ability of eDNA and UVC surveys to detect Coho Salmon.  



FIGURE 2. Predicted effects of (A) survey method, (B) log10 residual pool depth (cm;RD), and 
(C) log10 of basin area (km2; BA) on the detection probabilities (p) for eDNA (thick, solid, red
line) and UVC (thick, dashed blue line) with the associated standard error (thin lines of the same
color and type). Effect sizes were calculated over the observed range of values for the covariate,
shown as ticks (i.e., rug), while all other covariates were held at their median values. Observed
values for (B) are the unique RD for each pool, while (C) is the BA at the reach level and was
applied to all pools in the reach.



 

FIGURE 3. The cumulative detection probability as a function of the number of replicate water 
samples, calculated using the highest (p = 0.99), median (p = 0.89), and lowest (p = 0.13) 
estimated pool-specific detection probabilities. The vertical bars represent the 95% confidence 
interval. The horizontal dashed line represents the 95% cumulative detection probability. 

 

 

 

 



 
FIGURE 4. Predicted effects of (A) basin area and (B) an offset for pool area on the predicted 
mean count of Coho Salmon in a survey pool based on the top generalized linear model. Solid 
lines are the predicted effect of the variable (with 95% confidence interval) when all other model 
covariates are held at their median value. Ticks (i.e., rug) on horizontal axes denote location of 
positive and negative partial residuals.  

 

  



 
FIGURE S1. Frequency distributions of (A) the average count per occupied reaches of coho 
salmon, (B) the Residual Depth (RD in cm), (C) Large Woody Debris (LWD), (D) Basin Areas 
(BA in km2), (E) Pool length (m), and (F) Pool width (m) observed in the 2020-2021 survey 
seasons. Median values are shown (vertical dashed lines). 
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